Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses.

نویسندگان

  • Deepa Goel
  • Ajay K Singh
  • Vichita Yadav
  • Shashi B Babbar
  • Norio Murata
  • Kailash C Bansal
چکیده

Genetically engineered tomato (Lycopersicon esculentum) with the ability to synthesize glycinebetaine was generated by introducing the codA gene encoding choline oxidase from Arthrobacter globiformis. Integration of the codA gene in transgenic tomato plants was verified by PCR analysis and DNA blot hybridization. Transgenic expression of gene was verified by RT-PCR analysis and RNA blot hybridization. The codA-transgenic plants showed higher tolerance to salt stress during seed germination, and subsequent growth of young seedlings than wild-type plants. The codA transgene enhanced the salt tolerance of whole plants and leaves. Mature leaves of codA-transgenic plants revealed higher levels of relative water content, chlorophyll content, and proline content than those of wild-type plants under salt and water stresses. Results from the current study suggest that the expression of the codA gene in transgenic tomato plants induces the synthesis of glycinebetaine and improves the tolerance of plants to salt and water stresses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The optimization of gene transfer to tomato and the study of expression possibility of salt-tolerance gene (SOS3)

One of the main strategies to improve plant tolerance is the expression of stress-induced genes, which play a significant role in the ionic balance of plants. SOS3 is one of the important components of SOS-regulated ionic homeostasis pathway. Therefore, the expression of this gene could be an important step towards producing salt-resistant plants. In this work, we have transformed tomato (Solan...

متن کامل

Optimization of gene transfer with Agrobacterium to Bonab tomato cultivar using chitinase gene

Tomato is an important economic crop with nutritional and scientific value for study. Due to its agronomic importance and sensitivity to biotic and abiotic stresses, using new methods in breeding this crop is necessary. In this study, the effects of some factors, such as pre-cultivation time (1, 2, 3 and 4 days), Agrobacterium concentration (OD600nm = 0.4, 0.6, 0.8, and 1), inoculation time (5,...

متن کامل

Broadening Gene Pool of Rice for Resistance to Biotic Stresses Through Wide Hybridization

Variability in the cultivated germplasm for economic traits such as resistance to rice tungro virus, sheathblight, yellow stem borer, drought and salt tolerance is limited. This necessitated search for the genes in secondary and tertiary gene pool of genus Oryza. Fortunately, wild species are an important reservoir ofuseful genes for resistance to major disease, pest and tolerance t...

متن کامل

Improved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1

A significant portion of the world’s cultivated land is affected by salinity that reduces crop productivity in these areas. Breeding for salt tolerance is one of the important strategies to overcome this problem. Recently, genetic engineering is becoming a promising approach to improving salt tolerance. In order to improve the yield performance of canola in saline soils, we transformed canola w...

متن کامل

Evaluation of tomato genotypes and identification of a reliable trait for tolerance to salt stress

structure. So, it is possible to achieve the salinity-tolerant genotype in plants through creating changes in the genetic structure and breeding activities. Tomato is in the group of plants sensitive to salinity stress. Distinct studies have been explained different indicators for tolerance to salt stress in tomato. Identifying a reliable indicator in the early stages of plant growth under salt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of plant physiology

دوره 168 11  شماره 

صفحات  -

تاریخ انتشار 2011